Boundary Behaviour of Harmonic Functions on Hyperbolic Manifolds

نویسنده

  • CAMILLE PETIT
چکیده

Let M be a complete simply connected manifold which is in addition Gromov hyperbolic, coercive and roughly starlike. For a given harmonic function on M , a local Fatou Theorem and a pointwise criteria of nontangential convergence coming from the density of energy are shown: at almost all points of the boundary, the harmonic function converges non-tangentially if and only if the supremum of the density of energy is finite. As an application of these results, a Calderón-Stein Theorem is proved, that is, the non-tangential properties of convergence, boundedness and finiteness of energy are equivalent at almost every point of the boundary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Walks on Infinite Graphs and Groups — a Survey on Selected Topics

Contents 1. Introduction 2 2. Basic definitions and preliminaries 3 A. Adaptedness to the graph structure 4 B. Reversible Markov chains 4 C. Random walks on groups 5 D. Group-invariant random walks on graphs 6 E. Harmonic and superharmonic functions 6 3. Spectral radius, amenability and law of large numbers 6 A. Spectral radius, isoperimetric inequalities and growth 6 B. Law of large numbers 9 ...

متن کامل

Harmonic Functions on the Real Hyperbolic Ball I : Boundary Values and Atomic Decomposition of Hardy Spaces

Abstract. In this article we study harmonic functions for the Laplace-Beltrami operator on the real hyperbolic space Bn. We obtain necessary and sufficient conditions for this functions and their normal derivatives to have a boundary distribution. In doing so, we put forward different behaviors of hyperbolic harmonic functions according to the parity of the dimension of the hyperbolic ball Bn. ...

متن کامل

The Poisson Formula for Groups with Hyperbolic Properties

The Poisson boundary of a group G with a probability measure μ on it is the space of ergodic components of the time shift in the path space of the associated random walk. Via a generalization of the classical Poisson formula it gives an integral representation of bounded μ-harmonic functions on G. In this paper we develop a new method of identifying the Poisson boundary based on entropy estimat...

متن کامل

Harmonic Maps and the Topology of Conformally Compact Einstein Manifolds

We study the topology of a complete asymptotically hyperbolic Einstein manifold such that its conformal boundary has positive Yamabe invariant. We proved that all maps from such manifold into any nonpositively curved manifold are homotopically trivial. Our proof is based on a Bochner type argument on harmonic maps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013